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Cell-type-specific aging clocks to quantify 
aging and rejuvenation in neurogenic 
regions of the brain

Matthew T. Buckley1,2,19, Eric D. Sun    1,3,19, Benson M. George4,5, Ling Liu6,17, 
Nicholas Schaum6, Lucy Xu1,7, Jaime M. Reyes    8,9,10, Margaret A. Goodell8,9,10, 
Irving L. Weissman5,11,12,13, Tony Wyss-Coray    6,14,15, Thomas A. Rando    6,15,16,17,18  
& Anne Brunet    1,14,15 

The diversity of cell types is a challenge for quantifying aging and its 
reversal. Here we develop ‘aging clocks’ based on single-cell transcriptomics 
to characterize cell-type-specific aging and rejuvenation. We generated 
single-cell transcriptomes from the subventricular zone neurogenic region 
of 28 mice, tiling ages from young to old. We trained single-cell-based 
regression models to predict chronological age and biological age (neural 
stem cell proliferation capacity). These aging clocks are generalizable 
to independent cohorts of mice, other regions of the brains, and other 
species. To determine if these aging clocks could quantify transcriptomic 
rejuvenation, we generated single-cell transcriptomic datasets of 
neurogenic regions for two interventions—heterochronic parabiosis and 
exercise. Aging clocks revealed that heterochronic parabiosis and exercise 
reverse transcriptomic aging in neurogenic regions, but in different ways. 
This study represents the first development of high-resolution aging clocks 
from single-cell transcriptomic data and demonstrates their application to 
quantify transcriptomic rejuvenation.

Aging is the progressive deterioration of cellular and organismal func-
tion. Age-dependent decline is linked in large part to the passage of time 
and therefore the chronological age of an individual. But such decline 

is not inexorable. At the same chronological age, some individuals have 
better organismal and tissue fitness (biological age) than others. Fur-
thermore, aging trajectories can be slowed, and some aspects of aging 
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‘niche’) contains neural stem cells (NSCs) that give rise to differentiated 
cells (neurons, astrocytes) that are important for olfactory discrimina-
tion and repair upon injury38–45. Importantly, this neurogenic region 
contains at least 11 different cell types and experiences age-related 
changes correlated with deterioration in tissue function42,46–49. We built 
cell-type-specific aging clocks trained to predict the chronological or 
biological age of the SVZ neurogenic niche. To train these clocks, we 
performed single-cell RNA-seq on neurogenic regions from 28 mice, 
tiling 26 different ages from 3 months (young adult) to 29 months (geri-
atric adult; Fig. 1a). Given the constraining cost of single-cell RNA-seq, 
we used lipid-modified oligonucleotide (LMO) labeling (MULTI-seq; 
Methods)50 to multiplex samples within four independent cohorts, each 
with 4–8 mice (Supplementary Table 1). After demultiplexing and qual-
ity control, we obtained 21,458 high-quality single-cell transcriptomes 
(Extended Data Fig. 1a,b). Clustering and uniform manifold approxi-
mation and projection (UMAP) visualization confirmed the presence 
of 11 cell types in this neurogenic region, including differentiated cell 
types (microglia, endothelial cells, oligodendrocytes) and cells from 
the NSC lineage (astrocytes and quiescent neural stem cells (qNSCs), 
activated neural stem cells (aNSCs), neural progenitor cells (NPCs) 
and neuroblasts; Fig. 1b, Extended Data Fig. 1c and Supplementary  
Table 2). This analysis also corroborated the decline of proliferating 
NSCs in this region during aging (Fig. 1c,d,f)42. Our dataset provides a 
high temporal resolution resource to characterize aging in a neurogenic 
region in the brain.

To develop robust single-cell-based aging clocks, we focused 
on the six most abundant recovered cell types in the SVZ neurogenic 
region—oligodendrocytes, microglia, endothelial cells, astrocytes-
qNSCs (which cluster together; Fig. 1b and Methods), aNSC-NPCs 
(which cluster together; Fig. 1b and Methods) and neuroblasts. We first 
developed chronological age models that maximize correlation and 
minimize error between predicted and true chronological age. We built 
different models (lasso and elastic net regression51–53) from single-cell 
transcriptomic data for each of the six cell types as an input (Methods). 
We evaluated the performance of the models on true chronological age, 
by building models on 3 of the 4 cohorts and validation was performed 
on the remaining cohort (cross-cohort validation). This strategy avoids 
performance inflation caused by training and evaluating on correlated 
cells from the same animal or animals from the same cohort. Our result-
ing top-performing chronological aging clocks, termed ‘bootstrap’ and 
‘ensemble’, are groups of lasso and elastic net models trained on either 
bootstrap-sampled or randomly partitioned and merged meta cells, 
termed BootstrapCells or EnsembleCells (Methods). For the bootstrap 
models, 100 BootstrapCells were generated by taking 100 random 
samples of 15 cells for each cell type and animal combination, such that 

can be reversed by specific interventions, including dietary restriction, 
exercise, reprogramming factors, senolytic compounds and young 
blood factors1–6. As aging is the primary risk factor for many diseases, 
particularly neurodegenerative diseases7,8, a better understanding 
of aging and ‘rejuvenation’ strategies could yield large benefits for a 
wide range of diseases.

Aging is complex and difficult to quantify. One quantification 
approach is to use machine learning to build age prediction models—
‘aging clocks’—which can serve as integrative aging biomarkers. Such 
clocks should also accelerate our understanding of existing interven-
tions and help identify new strategies to counter aging and age-related 
diseases. Machine learning models trained on high-dimensional data-
sets (for example, DNA methylation, transcriptomics and proteomics) 
can predict chronological age with remarkable accuracy. For example, 
regression-based aging clocks trained on DNA methylation profiles 
from multiple tissues (‘epigenetic aging clocks’)9–13 or blood plasma 
protein profiles14–17 have striking performance to predict chronological 
age in humans. Aging clocks directly optimized to predict biological 
age have also been developed on functional phenotypes12,13,18 or time 
remaining until death19,20. Interestingly, beneficial health interventions 
such as diet and exercise21–23 and genetic manipulations24–26 result in 
younger predictions from epigenetic aging clocks trained on chrono-
logical age. Thus, epigenetic aging clocks, despite being trained on 
chronological age, also capture dimensions of biological age.

So far, molecular aging clocks have largely relied on datasets built 
using bulk tissue input or purified cell populations9–13,27–34. Bulk tissue 
profiles (and even purified populations) average the molecular profiles 
from many cells, integrating tissue composition changes and cell-
type-specific responses. Hence, the cell-type-specific contributions to 
aging and rejuvenation detected by these clocks remain unclear. While 
single-cell DNA methylation and transcriptomic data have started to be 
used to classify age35–37, cell-type-specific transcriptomic aging clocks 
have not yet been generated. Thus, it remains to be determined if aging 
clocks of different cell types ‘tick’ at different rates, which cell types 
predict age most accurately and how specific cell types respond to dif-
ferent interventions. The rapid advance of single-cell RNA-sequencing 
(RNA-seq) technologies provides a great opportunity to explore these 
unaddressed questions and identify new molecular aging clocks to 
study interventions to counter aging and age-related diseases.

Results
Cell-type-specific transcriptomic aging clocks
As a paradigm for tissue aging and functional decline in the brain, we 
focused on the neurogenic region located in the subventricular zone 
(SVZ) of the adult mammalian brain. The SVZ neurogenic region (or 

Fig. 1 | Cell-type-specific transcriptomic aging clocks for neurogenic regions. 
a, Training data for single-cell transcriptomic aging clocks. 10x Genomics single-
cell transcriptomics on SVZ neurogenic regions from four independent cohorts 
of 4–8 male mice, aged 3.3 to 29 months (Supplementary Table 1). SVZ regions 
from the same cohort were multiplexed using LMO labeling (MULTI-seq).  
b, UMAP projection of 21,458 high-quality cells from SVZ single-cell 
transcriptomes across cohorts. Each dot represents the transcriptome of an 
individual cell with transcripts detected from at least 500 genes. c, Same as in 
b but colored by mouse age. Two pairs of mice had the same age, resulting in 
26 age colors (28 mice). d, Same as in b but colored by the predicted cell cycle 
state based on Seurat’s CellCycleScoring function. e, Schematic depicting the 
generation of BootstrapCells for training chronological clocks. From each 
cell type and sample, 15 cells were sampled and combined to generate one 
BootstrapCell. This process was repeated 100 times per cell type and sample 
combination, to generate a training dataset that equally weighted each SVZ 
sample. f, SVZ proliferative fraction (cells predicted to be G2/M or S phase) as a 
function of chronological age. R represents Pearson’s correlation coefficient. The 
gray band corresponds to the 95% confidence interval. g, Schematic depicting 
the process of generating BootstrapCells for training biological age clocks. 

Biological age was defined as the SVZ proliferative fraction (f). h, Predicted 
biological age as a function of predicted chronological age. R represents 
Pearson’s correlation coefficient. Gray band corresponds to 95% confidence 
interval. i, Performance of BootstrapCell chronological age prediction across 
cell types. Density of BootstrapCell predictions is depicted in color and overlaid 
black dots represent the median prediction for each sample. Performance is 
based on cross-cohort validation. R values are Pearson’s correlation coefficients 
at the sample level. j, As in i but for BootstrapCell biological age score prediction 
across cell types. Biological age score is a linear transformation of the SVZ 
proliferative fraction. k, Overview of Pearson’s correlation coefficients 
and median absolute error (MAE) values for various methods of predicting 
chronological age across cell types. SingleCell uses bona fide single-cell 
transcriptomes with minimal processing as input to a lasso regression model. 
BootstrapCell uses the preprocessing method depicted in e and a lasso model. 
EnsembleCell involves repeatedly partitioning cells into groups of 15 cells 
and training an ensemble of elastic net models. Pseudobulk involves naïve 
pseudobulking all cells from the same cell type and sample and using a lasso 
regression model. Performance is based on cross-cohort validation. l, As in k but 
evaluating biological age prediction.
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each animal contributed equally to the training data (Fig. 1e). For the 
ensemble model, a random partitioning and elastic net model training 
process was repeated 20 times and then combined to generate a single 
ensemble model for a given cell type, such that each cell contributed 
equally. In our cross-cohort validation, these two models performed 
well to predict chronological age. For example, oligodendrocyte boot-
strap models predicted chronological age with a correlation R = 0.91 
and an error = 1.6 months and microglia Bootstrap models predicted 
chronological age with a correlation R = 0.92 and an error = 2.1 months 
(Fig. 1i and Supplementary Table 3). Such performance in a cross-cohort 
validation scheme suggests that these chronological aging clocks 
are not batch dependent. Overall, these models had R values ranging 

from 0.71 to 0.92 and errors ranging from 1.6 to 5.4 months, and they 
uniformly surpassed the performance of raw single-cell trained clocks 
and pseudobulked clocks (that is, pool of all cells from each cell type; 
Fig. 1k, Extended Data Fig. 1d, Supplementary Table 3 and Methods).

We also developed ‘biological aging clocks’ from our single-cell 
transcriptomic data–that is, clocks that are trained on a functional 
metric of the tissue, rather than chronological age. While chronologi-
cal aging clocks can record aspects of biological age15,22,24 and predict 
disease probability54,55, clocks trained on functional metrics linked 
to biological age may be particularly useful for intervention assess-
ment12,24. The primary functional role of the SVZ neurogenic region is 
to harbor proliferating NSCs that can produce new neurons, which in 
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turn integrate into functional neural circuits39,42–45. The proliferative 
capacity of NSCs in the SVZ neurogenic region declines with age, and 
this decline may be considered a functional metric of biological aging 
of this region56–59. To define neurogenic region ‘fitness’, we quantified 
the proliferative fraction of cells (consisting almost exclusively of 
aNSC-NPCs and neuroblasts) in the neurogenic regions from each of 
the 28 mice, based on cell cycle signatures (Fig. 1d). The fraction of 
cells predicted to be proliferative (in G2/M and S phases, the ‘prolif-
erative fraction’) decreased with age, as expected (Fig. 1f). Here we 
used proliferative fraction as a functional metric of the neurogenic 
region, which we defined as ‘biological age’. We trained a suite of clocks 
analogous to those described above, except using aNSC-NPC prolifera-
tive fraction as biological age (Fig. 1g). These biological aging clocks 
achieved robust prediction performance, although slightly dimin-
ished in comparison to chronological aging clocks (R = 0.41–0.89, 
error = 2.3–4.6 months; Fig. 1j,l). The predicted biological age was 
positively correlated with the predicted chronological age for each 
mouse (R = 0.84; Fig. 1h). Even though all biological aging clocks were 
trained on aNSC-NPC ‘proliferative fraction’, the microglia and oligo-
dendrocytes biological age clocks performed better than aNSC-NPC  
ones (Fig. 1j,l).

Collectively, these data reveal that single-cell transcriptomes can 
be used to build accurate chronological and biological aging clocks 
for different cell types.

External validation and generalization of aging clocks
To externally validate these cell-specific aging clocks, we retrained 
chronological and biological aging clocks on all 28 mice and applied 
them to independent datasets. Our single-cell-based models eas-
ily separated young and old samples in an independent single-cell 
RNA-seq dataset from SVZ neurogenic regions of young and old 
mice48 (Fig. 2a,b). All cell-type-specific clocks effectively sepa-
rated young and old samples, although the exact month of pre-
dicted age was more accurate with chronological clocks from 
some cell types (for example, microglia) compared to others (for 
example, neuroblasts; Fig. 2a,b).The successful application of our 
aging clocks to these independent datasets demonstrates their  
robustness.

We next asked if chronological and biological aging clocks could 
generalize to the same cell types in other regions of the brains and in 
other species. We first used a publicly available single-cell RNA-seq 
dataset with the same cell types from the other neurogenic region 
in the brain—the dentate gyrus of the hippocampus—in mice of dif-
ferent ages60. Our aging clocks properly separated samples of dif-
ferent ages in the dentate gyrus of the hippocampus, even samples 
only 1 month apart in age (Fig. 2c,d). We then used a publicly avail-
able single-nucleus RNA-seq datasets with oligodendrocytes and 
astrocytes from the middle temporal gyrus of the brain of humans 
of different ages61. Our chronological aging clocks could predict 
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ages from both cell types, and these ages correlated with the actual 
ages of the humans (R = 0.75 for oligodendrocytes; R = 0.43 for astro-
cytes; Extended Data Fig. 1e). Thus, cell-type-specific aging clocks 

derived from mouse SVZ neurogenic regions generalize to the 
same cell types in other regions of the brain and to other species,  
including humans.
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Fig. 3 | Genes underlying the cell-type-specific chronological aging clocks. 
a, Contribution of individual genes to the aNSC-NPC chronological aging 
clock (BootstrapCell). Donut plots, with sector size denoting gene weight 
in the model and color indicating sign of expression change with age. Total 
number of genes used by the clock is in the center. Positive coefficients (orange) 
indicate increased gene expression in older age. Negative coefficients (blue) 
indicate decreased gene expression in older age. For other chronological and 
biological aging clocks, see Extended Data Fig. 2a,b. All genes and coefficients 
are in Supplementary Table 3. b, UpSet plot illustrating the intersection of 
gene sets used by cell-type-specific chronological aging clocks. Genes present 
in four, five or six of the analyzed clocks are highlighted in green, yellow or 
red, respectively. For biological aging clocks, see Extended Data Fig. 2c. c, Bar 
plot comparing the impact and count of shared and specific genes within the 
aNSC-NPC chronological aging clock. Impact is the sum of the absolute value 

of the gene coefficients. Count is the number of genes in each category. For 
other chronological and biological aging clocks, see Extended Data Fig. 2d,e. 
d, Expression trajectories as a function of age of select clock-specific genes. 
Expression values are log-normalized counts per 10,000 transcripts. Bands 
correspond to 95% confidence intervals. e, Expression trajectories as a function 
of age of select shared genes across at least four cell-type-specific clocks. Bands 
correspond to 95% confidence intervals. f, Top enriched Gene Ontology (GO) 
biological process terms from GSEA of genes selected by chronological aging 
clocks. g, Assessment of the ability of cell-type-specific clocks to predict age 
given transcriptomes of different cell types. Size of dots corresponds to Pearson 
correlation with chronological age and color indicates MAE. Error substantially 
increases when testing on alternate cell types. For GO term analysis of cell-
specific biological aging clocks, see Extended Data Fig. 2f.
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We also determined if the approach we used to build cell-type-
specific chronological aging clocks was generalizable to other cell 
types in tissues other than the brain. Chronological aging clocks gener-
ated from endothelial cells from limb muscle, natural killer T cells from 
spleen and podocytes from kidney, using single-cell RNA-seq data from 
the multi-tissue aging atlas Tabula Muris Senis62 also exhibited great 
performance (R values ranging from 0.94 to 0.98) to predict actual 
chronological age (Extended Data Fig. 1f). Hence, cell-type-specific 
aging clocks can be derived from single-cell transcriptomics datasets 
from various cell types and tissues.

Genes that contribute to the cell-type-specific aging clocks
What makes these aging clocks ‘tick’—that is, what are the genes that 
contribute to the aging clocks in each cell type? In the process of train-
ing, each clock selects top genes useful for accurate prediction and 
weighs the importance of each. To analyze selected genes and their 
relative contributions, we visualized each chronological or biological 
aging clock as a donut plot with genes that contribute the most at the 
top (Fig. 3a and Extended Data Fig. 2a,b). Gene sets contributing to the 
chronological and biological aging clocks in different cell types ranging 
from 96 to 359 genes (for chronological clocks) and 174 to 399 genes 
(for biological clocks), and they encompassed genes whose expres-
sion generally increased or decreased with age (Fig. 3a, Extended Data  
Fig. 2a,b and Supplementary Table 4). Genes selected by the aging 
clocks generally had higher mean expression and greater variability 
between mice (relative to expression level) compared to other genes 
(Extended Data Fig. 3a,b) and were differentially expressed during 
aging (Extended Data Fig. 4a,b).

The top genes contributing to the aNSC-NPC chronological aging 
clock were AC149090.1 and Ifi27, which are both upregulated with age 
(Fig. 3a). AC149090.1 is orthologous to human PISD, a gene encoding a 
phospholipid decarboxylase involved in lipid metabolism (phosphati-
dylethanolamine production), linked to autophagy, and localized to 
the inner mitochondrial membrane63,64. Ifi27 (also referred to as Isg12) 
is a transcript upregulated in response to type I interferons65 (Fig. 3a). 
Thus, aging clocks identify many genes, including inflammation and 
lipid metabolism genes, whose expression is most predictive of aging 
in a particular cell type.

To investigate whether each cell-type-specific clock selects similar  
or unique genes, we compared intersections of chronological or 
biological aging clock gene sets (Fig. 3b and Extended Data Fig. 2c).  
Interestingly, AC149090.1, was selected by chronological aging  
clocks from all six different cell types (Fig. 3b) and Ifi27 was selected by 
chronological aging clocks from five of six cell types (Fig. 3b). In con-
trast, most genes selected by the cell-type-specific clocks were cell-type 
specific (Fig. 3b and Extended Data Fig. 2c). The cell-type specificity 
of the clocks exceeded what would be expected from transcriptome 
cell-type specificity alone (Extended Data Fig. 5a,b). However, shared 
selected genes carry a disproportionate weight within the clocks, 
with coefficients approximately 40% larger in magnitude (Fig. 3c  
and Extended Data Fig. 2d,e). Cell-type-specific genes (Fig. 3d) and  
even shared genes (Fig. 3e) exhibited differences in trajectory shapes 
(Fcrls and Crlf2 in microglia) and expression magnitudes (for example,  
Ifi27 in different cell types from the NSC lineage) during aging in differ-
ent cell types. Thus, cell-type-specific clocks capture useful cell-type-
specific expression differences and dynamics that would be missed 
by bulk methods.

While genes selected by the aging clocks are mostly cell-type 
specific, the pathways to which they belong could still be widely shared 
across cell types. To test this possibility, we examined the pathways 
enriched in the specific or shared genes selected by the chronologi-
cal aging clocks. Interestingly, gene-set enrichment analysis (GSEA) 
on the specific genes from each chronological or biological clock 
revealed enrichment for different biological processes in each cell 
type (Fig. 3f and Extended Data Fig. 2f), for example, stress response 

for oligodendrocytes and chemotaxis for microglia (Fig. 3f). Thus, 
pathways for specific genes selected by the clocks are also largely 
cell-type specific and may reflect age-dependent changes in function 
in each cell type. There were a few biological processes most enriched 
in shared genes, including response to type I interferon and cytokine 
signaling (Fig. 3f and Extended Data Fig. 2f). Hence, our dissection 
of the genes composing the clocks highlights specific and common 
features of cellular aging, including stress response, lipid metabolism  
and inflammation.

Cell-type-specific clocks generated in one cell type did not per-
form as well on a different cell type (Fig. 3g), even though there are 
shared genes across all clocks and these are more heavily weighted. 
Thus, generating an aging clock from a specific cell type is helpful 
for accurately predicting the age of an individual from that cell type 
(Extended Data Fig. 1f).

Together, these data indicate that single-cell-based clocks  
select highly cell-type-specific genes to predict the age of the individual 
they come from, suggesting different aging trajectories in distinct 
cell types.

Aging clocks capture the rejuvenating effect of parabiosis
Do single-cell-based aging clocks—whether trained on chronological or 
biological age—capture known ‘rejuvenating’ interventions? A robust 
rejuvenating intervention across tissues is heterochronic parabiosis—
the sharing of blood circulation between young and old animals66–77. 
Parabiosis with a young animal can restore aspects of cell function (for 
example, NSC proliferation and vascular remodeling) in neurogenic 
regions of an old animal, and part of the effects can be recapitulated 
by the injection of young blood or plasma69,78,79. To test how our single-
cell-based aging clocks recorded the impact of exposure to young and 
old blood on neurogenic regions, we generated multiplexed single-cell 
RNA-seq data on SVZ neurogenic regions from heterochronic parabi-
osed young and old mice and isochronic parabiosed controls. In total, 
we collected 25,595 single-cell transcriptomes from the SVZ neurogenic 
regions of 22 mice across 2 independent cohorts (Fig. 4a, Extended Data 
Fig. 6a,b, Supplementary Table 1 and Methods). Mean gene expres-
sion was similar in both cohorts for most clock genes (Extended Data  
Fig. 6b). This dataset represents a single-cell RNA-seq resource for 
heterochronic parabiosis in the SVZ neurogenic region.

Applying our suite of cell-type-specific aging clocks, we predicted 
both the chronological and biological ages of individuals in response 
to heterochronic parabiosis. Interestingly, mice exposed to young 
blood showed a striking rejuvenation effect in aNSC-NPCs, across both 
cohorts for chronological age (rejuvenation of 5.38 months in cohort 
1 and 3.66 months in cohort 2; 4.52 months, averaging both cohorts;  
Fig. 4b,c and Extended Data Fig. 6c–e) and to a lesser extent for bio-
logical age (rejuvenation of 3.57 months in cohort 1 and 1.44 months in 
cohort 2; 2.51 months, averaging both cohorts; Fig. 4d,e and Extended 
Data Fig. 6f–h). The effect of young blood was statistically significant 
at the mouse level (P = 0.019) in aNSC-NPCs, for chronological aging 
clocks in cohort 2 (which had 4–6 mice per condition; Extended Data 
Fig. 7a,b). In other cell types, there was a tendency toward a rejuve-
nation effect, particularly in microglia and neuroblasts (although 
with less consistency between cohorts; Fig. 4c,e and Extended Data 
Figs. 6c–h and 7a,b). Overall, the first cohort (21 months difference 
between young and old) showed a stronger rejuvenation effect than 
the second cohort (15.5 months difference between young and old; 
Fig. 4c,e), suggesting an improved effect of exposure to young blood 
on older animals (or a greater magnitude when the difference in age 
in parabionts is larger). There was no correlation between rejuvena-
tion effect size and clock performance, suggesting that differences 
in intervention effects across cell types was not primarily due to 
differences in the performance of their respective cell-type-specific 
aging clocks. Conversely, aging clocks also revealed that young 
mice exposed to old blood experienced an increase of predicted 
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chronological age across several cell types (Fig. 4c,e), confirming the 
detrimental impact of old blood in other tissues74,77,80–84.

Thus, single-cell-based aging clocks, even when trained on 
chronological age, can be used to quantify the impact and magni-
tude of rejuvenation and pro-aging interventions on different cell 
types. Furthermore, these clocks uncover cell-specific rejuvenating 
effects in old neurogenic regions exposed to young blood focused 
on proliferating NSCs.

Aging clocks capture the rejuvenating effect of exercise
We asked if other interventions that are beneficial for health also  
had a ‘rejuvenating’ effect on cell-type-specific aging clocks. Thus, we 
applied clocks to another systemic intervention—exercise. Exercise  
via voluntary wheel running has beneficial effects on the brain, increas-
ing hippocampal neurogenesis and improving memory85–91, and  
boosting SVZ neurogenesis in several cases92–95. We exercised young 
(4.5 months) and old (21.5 months) mice by providing 5 weeks of  
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Fig. 4 | Effect of heterochronic parabiosis on cell-type-specific aging 
clocks. a, Schematic of parabiosis cohorts and corresponding UMAP 
projections from each cohort. Parabiosis cohort 1 dataset was generated with 
young (5 months) and old (26 months) male mice (number of mice indicated in 
parentheses); 11,771 high-quality transcriptomes were collected, using one SVZ 
sample per 10x lane. Parabiosis cohort 2 was generated with young (5 months) 
and old (21 months) male mice; 13,824 high-quality transcriptomes were 
collected, using LMOs to multiplex SVZ samples across three 10x lanes. UMAP 
projection and cell type clustering of SVZ single-cell transcriptomes in cohorts 
1 and 2. Each dot represents the transcriptome of an individual cell. Colored by 
age and intervention (heterochronic parabiosis). For coloration by cell type, 
see Extended Data Fig. 6a. b, Density plots of the predicted chronological ages 
for aNSC-NPCs from cohort 1 and cohort 2. Green arrows illustrate the median 
shift in predicted age between old aNSC-NPCs exposed to young blood (old 
heterochronic) and old aNSC-NPCs exposed to old blood (old isochronic, 
control). Density plots for individual mice, and their cohorts of origin, are 

provided on the right. c, Summary of heterochronic parabiosis effects on 
chronological age scores across cell types. Effect sizes were calculated by 
taking the difference in median predicted ages between conditions. Blue color 
indicates a decrease in predicted chronological age (‘rejuvenation’). Red color 
indicates an increase in predicted chronological age (‘detrimental impact’). 
d, Density plots of the predicted biological age scores for neuroblasts from 
cohort 1 and cohort 2. Green arrows illustrate the median shift in predicted age 
between old neuroblasts exposed to young circulation (old heterochronic) 
compared to old neuroblasts exposed to old circulation (old isochronic, 
control). Density plots for individual mice, and their cohort of origin, are 
provided on the right. e, Summary of heterochronic parabiosis effects on 
biological age scores across cell types. Effect sizes are calculated by taking 
the difference in median predicted ages between conditions. Blue indicates 
a decrease in predicted chronological age (‘rejuvenation’). Red indicates an 
increase in predicted biological age. For statistical analysis at the mouse level, 
see Extended Data Fig. 7a.
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access to freely spinning wheels (or no wheels as controls) and  
verified that mice with this paradigm exercised (Fig. 5a, Extended  
Data Fig. 8a and Supplementary Table 1). We then generated 79,488 
single-cell transcriptomes from the SVZ neurogenic region from  
young and old, exercised and non-exercised controls—a total of 15 
mice (Fig. 5a and Methods). These single-cell RNA-seq data represent 
a great resource for the young and old SVZ neurogenic niche response 
to exercise.

Applying our chronological aging clocks to the exercise  
transcriptome dataset revealed that exercise had a small rejuvena-
tion effect in oligodendrocytes (1.4 months in young, 2.0 months  

in old, not significant at the mouse level; Fig. 5b,c) and in aNSC-NPCs  
(1.9 months in young, 0.3 months in old; Extended Data Fig. 8b).  
Biological aging clocks also captured a small rejuvenation effect in 
oligodendrocytes and aNSC-NPCs (0.6 months in young, 0.8 months 
in old; and 1.4 months in young, 1.2 months in old, respectively;  
Fig. 5d,e and Extended Data Fig. 8c). The effect of exercise in  
young mice was trending at the mouse level (P = 0.057) in oligoden-
drocytes for chronological aging clocks (Extended Data Fig. 7c,d). 
Hence, single-cell-based aging clocks also identify rejuvenating 
trends for exercise in neurogenic regions, notably in aNSC-NPCs  
and oligodendrocytes.
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Fig. 5 | Effect of exercise on cell-type-specific aging clocks. a, Schematic 
of voluntary wheel running experiment and UMAP projection of single-cell 
transcriptomes. For the exercise cohort, 4 young (4.5 months) or 3–4 old (21.5 
months) male mice were transferred into cages with either a freely spinning 
wheel or no wheel. Wheel rotations were tracked to verify that mice indeed 
exercised. After 5 weeks, SVZ niches were collected, so mice were ~6 months and 
23 months at time of collection, and 15 lanes of 10x Genomics transcriptomics 
performed without sample multiplexing. UMAP projection and cell-type 
clustering of SVZ single-cell transcriptomes in the exercise cohort. Each 
dot represents the transcriptome of an individual cell. Colored by age and 
intervention (exercise) or by cell type (UMAP; Extended Data Fig. 8a). b, Density 
plots of predicted chronological ages of oligodendrocytes by age and exercise 
condition. Exercise consistently rejuvenated oligodendrocyte transcriptomes 

regardless of age. c, Summary of exercise effects on chronological age scores 
across cell types and ages. Effect sizes were calculated by taking the difference 
in median predicted ages between conditions. Blue indicates a decrease in 
predicted chronological age (‘rejuvenation’). Red indicates an increase in 
predicted chronological age (‘detrimental impact’). d, Density plots of aNSC-NPC 
predicted biological ages. Exercise rejuvenated aNSC-NPC transcriptomes of 
both young and old mice. e, Summary of exercise effects on biological age scores 
across cell types and ages. Effect sizes were calculated by taking the difference 
in median predicted ages between conditions. Blue indicates a decrease in 
predicted biological age (‘rejuvenation’). Red indicates an increase in predicted 
chronological age (‘detrimental impact’). For statistical analysis at the mouse 
level, see Extended Data Fig. 7b.
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Comparison between heterochronic parabiosis and exercise
We compared the effect of heterochronic parabiosis and exercise 
on cell-type-specific aging clocks. Overall, heterochronic parabiosis 
(merging cohorts 1 and 2) had a larger rejuvenating effect than exer-
cise across cell types (Fig. 6a). Young blood had a strong rejuvenat-
ing effect on old mice in aNSC-NPCs and had a smaller rejuvenating 
effect on microglia and neuroblasts (Figs. 4c,e and 6a and Extended 
Data Figs. 7a,b and 9a). Exercise also had a small rejuvenating effect 
on aNSC-NPCs and oligodendrocytes (Fig. 6a and Extended Data  
Figs. 7c,d and 9a). Together, these results suggest that exposure to 
young blood may be a stronger intervention than exercise, at least at 
the transcriptomic level, and may impact both shared (aNSC-NPCs) 
and distinct cell types.

We next examined the genes responding to either or both 
of these interventions in a cell type (aNSC-NPCs) responding to 
both interventions, albeit with a different magnitude. In aNSC-
NPCs, heterochronic parabiosis mostly reversed clock genes that 
increased in expression with aging (such as those associated with 
a type I interferon response; Fig. 6b and Extended Data Fig. 9b). In 
contrast, exercise mostly reversed clock genes that decreased in 
expression with aging (such as those associated with transmem-
brane transport; Fig. 6b and Extended Data Fig. 9b). These results 
suggest that young blood and exercise target different genes and  
pathways.

To independently test whether heterochronic parabiosis 
and exercise impact different genes, we examined differentially 
expressed genes (DEGs) in aNSC-NPCs during aging and in response 
to each intervention (Methods and Fig. 6c). There was minimal 
overlap between parabiosis-responsive and exercise-responsive 
genes (by DEG), corroborating that these interventions impact 
the aging transcriptome differently (Fig. 6c). This minimal over-
lap was not due to a drastically different overall pattern of gene 
expression between the parabiosis and exercise datasets (Extended 
Data Fig. 10). Young blood reversed the age-associated increase 
in interferon-stimulated genes (including the shared gene Ifi27;  
Fig. 6c). In contrast, exercise reversed the age-associated decline of 
several genes involved in proliferation and neurogenesis, including 
Dbx2, which is implicated in age-related SVZ neurogenic decline96  
(Fig. 6c). Young blood but not exercise reversed the age-associated 
increase in genes involved in the ‘interferon-γ response’ signature 
(Fig. 6d). Exercise but not young blood reversed the age-associated 
decrease in the ‘negative regulation of neurogenesis’ signature  
(Fig. 6e), consistent with the ability of exercise to boost neurogenesis 
in old mice88–91,97. DEG analysis also confirmed that the impact of 
young blood on DEGs was stronger than that of exercise across most 
cell types (Extended Data Fig. 9c). Together, these data corroborate  
that the transcriptional responses of old neurogenic regions to  
heterochronic parabiosis and exercise differ.
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expression change with a false discovery rate (FDR) < 0.1. For aging, mice 
were grouped as either young (<7 months) or old (>20 months). DEGs shared 
between age and young blood were interferon-stimulated genes. DEGs shared 
between age and exercise were genes involved in proliferation, metabolism and 
development. d, Violin and box plots of gene signatures (sum of normalized gene 
expression for all genes in the gene set) for ‘interferon-γ response’ and ‘negative 
regulation of neurogenesis’ for aNSC-NPCs in the parabiosis cohort 1 and cohort 2 
combined. In the box plot, the line represents the median and the box represents 
the interquartile range. P values were obtained from the two-sided Wilcoxon 
rank-sum test (n = 668, 149 and 146 cells for ‘young isochronic’, ‘old isochronic’ 
and ‘old heterochronic’, respectively). e, As in d but for aNSC-NPCs in the exercise 
cohort (n = 2,243, 503 and 1,170 cells for ‘young sedentary’, ‘old sedentary’ and ‘old 
exercise’, respectively).
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Relevance of rejuvenation interventions to aging
Importantly, we determined whether the main effects of exposure to 
young blood and exercise are indeed relevant to aging (Fig. 7a). To this 
end, instead of training regression clocks on age to compare rejuvena-
tion interventions, we trained classifiers on rejuvenation interventions 
(‘rejuvenated’ and ‘control’) and determined if different chronological 
ages were classified as rejuvenated or control. With the classifier built 
on heterochronic parabiosis, younger mice showed a greater likeli-
hood of being classified as ‘rejuvenated’ whereas older mice showed a 
greater likelihood of being classified as ‘control’ (Fig. 7b). This effect was 
particularly strong in aNSC-NPCs and microglia (Fig. 7b,c). In contrast, 
with the classifier built on exercise, younger mice showed a greater 
likelihood of being classified as ‘rejuvenated’ in only two of six cell 
types (aNSC-NPCs and oligodendrocytes; Fig. 7b), which were also 
the same two cell types that showed the strongest rejuvenation from 
aging clock analysis (Fig. 6a). This analysis indicates that exercise and 
young blood induce changes that are indeed relevant to aging and 
corroborates the comparatively larger effects of young blood as an 
intervention. Collectively, these machine learning analyses have the 
potential to identify differences in rejuvenation interventions.

Discussion
Here we show that single-cell RNA-seq data allow the generation of 
quantitative aging clocks that can be trained on chronological age or 
on aspect of tissue fitness (defined here as ‘biological age’)—that is, 
the proliferative fraction of stem cells in the neurogenic region. To our 
knowledge, these are the first quantitative aging clocks in distinct cell 
types based on single-cell RNA-seq. We also generate three datasets that 
represent valuable stand-alone resources: a high temporal resolution 
single-cell RNA-seq aging dataset of a neurogenic niche and single-
cell RNA-seq datasets for a neurogenic niche following heterochronic 
parabiosis and voluntary exercise. These datasets will be helpful to 
identify additional cellular and molecular changes during aging and 
rejuvenation.

Our clock accuracy (for example, R = 0.92 in microglia) approaches 
that of bulk DNA methylation and proteomics11,15,30 while preserving 
cell-type specificity and avoiding biased sorting procedures. Single-cell 
DNA methylation and proteomic methods have suffered from sparsity 
and scaling challenges, although there is rapid innovation to address 
these issues36,98. While the methods described here preserve cell-type 
specificity without relying on cell sorting, ‘pure’ single-cell trained 
clocks were not as effective as our BootstrapCell and EnsembleCell 

approaches (Fig. 1k,l). Thus, using small pools of 15 single-cell transcrip-
tomes can mitigate some technological (for example, gene dropouts) 
or biological (for example, transcriptional bursting) challenges inher-
ent to single-cell RNA-seq datasets. Nevertheless, increased gene vari-
ability (transcriptional noise) is itself a feature of aging99–103, and it will 
be important to model this feature in the next-generation aging clocks.

A limitation of the application of chronological age-trained clocks 
is that interventions stimulating age-associated compensatory path-
ways (for example, stress responses) will reflect as age-acceleration 
interventions despite their functional benefit to the cell, the tissue or 
the organism. Thus, there is a need for a better understanding of genes 
contributing to the aging clocks and their function as well as continued 
development of functional and phenotypic-trained models. Here, we 
built clocks based on a functional phenotype of the neurogenic region 
(NSC proliferative capacity), but more comprehensive phenotyping 
approaches will be important to pursue. Overall, functional-aging 
clocks are likely to be instrumental in understanding the biology of 
aging and rapidly evaluating interventions necessary to extend healthy 
lifespan.

The observation that heterochronic parabiosis and exercise can 
‘turn back’ the single-cell-based aging clocks provides a proof of con-
cept that these aging clocks, even when trained on chronological age, 
can record aspects of aging biology. This is in line with other aging 
clocks built on bulk datasets11,21–24,31,32. Our results also highlight cell-
type specificity for aging and possibly for rejuvenation interventions. 
This is unique to single-cell-based clocks and will allow a better under-
standing of cell heterogeneity in tissue aging and rejuvenation. Our 
data also reveal different potential for rejuvenation strategies, at least 
at the transcriptional level. These results raise the exciting possibility 
that aging clocks can serve to rapidly test the efficacy of rejuvenation 
interventions and to support combining specific interventions to 
counter aging and age-related diseases.

Methods
Our research complies with all relevant ethical regulations (AAALAC), 
under Institutional Animal Care and Use (IACUC) protocols 8661 and 
16246 at Stanford University and VA Palo Alto Committee on Animal 
Research, ACORP LUO1736.

Animals
For aging cohorts and the exercise cohort, male C57BL/6 mice were 
obtained from the National Institute on Aging (NIA) Aged Rodent 
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Fig. 7 | Predicting ‘rejuvenation intervention or control’ state on the 
transcriptomes from mice of different ages to assess intervention relevance 
to aging. a, Schematic describing how to predict ‘rejuvenation intervention 
or control’ state on the transcriptomes from mice of different ages to assess 
intervention relevance to aging. b, Classification results based on logistic 
regression for the parabiosis intervention in aNSC-NPCs. Correlation between 
classification results, plotted as (log(p(control) / p(intervention))) and the 
actual chronological age of aNSC-NPC BootstrapCell transcriptomes. Old 
mice were more likely to be classified as ‘isochronic old control’, whereas 
young mice were more likely to be classified as ‘heterochronic old’, indicating 

that the gene signature that distinguishes exposure to young and old blood 
is relevant to aging. R is the Pearson correlation. Higher correlation indicates 
that the main intervention signature overlaps with and reverses age-related 
changes. c, Summary of correlations between intervention state prediction and 
chronological age across cell types and interventions, with a separate classifier 
built for each. The exercise classifiers were built to distinguish old sedentary 
from old exercised transcriptomes for each cell type. The lower correlation 
between intervention state predictions and age for the exercise samples implies 
that the signatures that distinguish exercised and sedentary mice are less related 
to aging than those derived from parabiosis intervention classifiers.
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colony. For parabiosis cohort 1, old mice were male C57BL/6 mice 
from the NIA Aged Rodent colony and young mice were male B6.SJL-
Ptprca Pepcb/BoyJ male (Pep boy) from the Jackson Laboratory. For 
parabiosis cohort 2, old mice were male C57BL/6J and young mice were 
male C57BL/6J or C57BL/6-Tg(UBC-GFP)30Scha/J from the Jackson 
Laboratory. Mice were housed in the Comparative Medicine Pavilion, 
ChemH/Neuroscience Vivarium or the SIM-1 Non-Barrier Rodent Facil-
ity at Stanford, or in the Veterinary Medical Unit at the Palo Alto VA. 
All these facilities provide equivalent standard conditions with a 12-h 
light–dark cycle, ad libitum food and water, ~21 °C temperature, and 
~50% humidity. All mice were acclimated to their vivarium for at least 
2 weeks before use in any experiment.

Tissue and cell collection for the subventricular zone 
neurogenic niche
For single-cell RNA-seq datasets, SVZ neurogenic niches were collected 
and processed as described in ref. 48. Briefly, mice were sedated with 
1 ml of 2.5% vol/vol Avertin (Sigma-Aldrich, T48402-25G) and perfused 
with 15 ml of PBS (Corning, 21-040-CV) with heparin sodium salt (50 U 
ml−1; Sigma-Aldrich, H3149-50KU) to remove the blood, and brain col-
lection was performed immediately. As previously described104, the 
SVZ from each hemisphere was microdissected and dissociated with 
enzymatic digestion with papain at a concentration of 14 U ml−1, rock-
ing for 10 min at 37 °C. Note that the samples also contained some of 
the surrounding striatum, which contributed to the oligodendrocyte 
population in our study. The dissociated SVZ was triturated in a solution 
containing 0.7 mg ml−1 ovomucoid and 0.5 mg ml−1 DNase I (Sigma-
Aldrich, DN25-100MG) in DMEM/F12 (Thermo Fisher, 11330032). The 
dissociated cells from the SVZ were centrifuged through 22% Per-
coll (Sigma-Aldrich, GE17-0891-01) in PBS to remove myelin debris. 
After centrifugation, cells were filtered through a 35-μm snap-cap 
filter (Corning, 352235), washed once with 1.5 ml of FACS buffer (HBSS 
(Thermo Fisher, 14175103), 1% BSA (Sigma, A7979) and 0.1% glucose 
(Sigma-Aldrich, G7021-1KG)) and spun down for 5 min at 300g. Cells 
were resuspended in 120 μl FACS buffer with live/dead staining per-
formed using 1 μg ml−1 propidium iodide (BioLegend, 421301) and 
kept on ice until sorting. FACS sorting was performed on a BD FACS 
Aria II sorter, using a 100-μm nozzle at 13.1 PSI. Cells were sorted into 
low protein binding microcentrifuge tubes containing 750 μl of PBS 
with 1% BSA and 0.1% glucose. When not applying sample multiplexing 
(parabiosis cohort 1 and exercise cohort), cells were then centrifuged 
(300g for 5 min at 4 °C) and resuspended in 50 μl FACS buffer, counted 
and then immediately run on 10x Chromium to capture single-cell 
transcriptomes.

Cohorts of mice of different ages
To generate the single-cell RNA-seq dataset from mice of different ages 
and train aging clock models, we used four independent cohorts of 
aging mice. Each cohort had 4–8 male C57BL/6 mice from the NIA Aged 
Rodent colony, for a total of 28 mice. These 28 mice tiled 26 different 
ages (two pairs of mice had the same age), ranging from 3.3 months 
(young adult) to 29 months (geriatric adult).

Lipid-modified oligonucleotide multiplexing
Sample multiplexing was performed using LMOs, a method also known 
as MULTI-seq50. Lipid anchor and co-anchor reagents were kindly pro-
vided by the Gartner Laboratory at the University of California, San 
Francisco and custom oligonucleotides were ordered from Integrated 
DNA Technologies. We used MULTI-seq primer: 5′ CTTGGCACCCGA 
GAATTCC; and Universal.I5: 5′AATGATACGGCGACCACCGAGATCTA 
CACTCTTTCCCTACACGACGCTCTTCCGATCT50.

We followed the exact protocol outlined by McGinnis et al.50 with 
the following modifications: (1) all labeling with LMOs was performed 
in a 4 °C cold room because, in our hands, the quality of labeling was 
very sensitive to temperature; (2) to avoid cell loss and cell clumping, 

cells were sorted into PBS with 2% BSA, and BSA was then removed using 
three PBS washes; (3) concentrations and volumes were adjusted to 
account for low cell numbers: 7.5 μl of 1 mM lipid anchor with oligonu-
cleotide barcode mix was added to a 70 μl volume of resuspended cells 
followed by 7.5 μl of 1 mM lipid co-anchor; (4) labeling reactions were 
quenched with 2% BSA then samples were pooled before subsequent 
1% BSA PBS washes to further reduce cell loss. The combined sample 
was resuspended at 50 μl for cell counting and single-cell RNA-seq.

Single-cell libraries and RNA sequencing
Single-cell RNA-seq was performed using a 10x Chromium machine 
and 10x Genomics V3.0 Transcriptomics kits (aging cohorts, parabio-
sis cohort 2 and exercise cohort) or a 10x Genomics V2 kit (parabiosis 
cohort 1). For sequencing, 10,000 cells per lane were targeted but 
typical yields were approximately 5,000 cells. Library preparation 
was done according to the manufacturer’s protocol (10x Genomics 
V3.0 or 10x Genomics V2 for parabiosis cohort 1). Sequencing was 
done to target a minimum of 25,000 reads per cell for transcriptome 
characterization and 5,000 reads per cell for LMO label recovery. The 
aging cohorts and the parabiosis cohort 2 samples were multiplexed 
with 4–8 samples per 10x Chromium lane. The parabiosis cohort 1 
and the exercise samples were not multiplexed with LMO reagents. 
Sequencing was performed on either an Illumina HiSeq 4000 (aging 
cohorts and parabiosis cohort 1) or a NovoSeq using the 2 × 150-bp 
setting (parabiosis cohort 2 and exercise).

Analysis (quality control)
Cell Ranger (version 3.0.2) default settings were used to distinguish 
cells from background. Subsequent analysis was performed using R 
(version 3.6.3). Cells were filtered out in Seurat (version 3.2.3)105,106 if 
they contained fewer than 500 genes or greater than 10% mitochondrial 
reads. Small clusters of doublets that shared several marker genes from 
pure populations were identified and removed. LMO demultiplexing 
was performed using Seurat’s HTODemux function. A complete view 
of the data processing and quality-control parameters can be found at 
https://github.com/sunericd/svz_singlecell_aging_clocks.

Cell type annotation
Cell types in all datasets were manually annotated as described in ref. 
48, and cross-referenced with annotations present in the single-cell 
database PanglaoDB107. Identification of major clusters was performed 
with the FindClusters() algorithm in the Seurat package, which uses a 
shared nearest-neighbor modularity optimization-based clustering 
algorithm106. Marker genes for each major cluster were found using 
the Seurat (version 4.1.1) function FindAllMarkers() using the Wilcoxon 
rank-sum test. Cell types were determined using marker genes identi-
fied from the literature and the marker genes were cross-referenced 
with annotations present in the single-cell database PanglaoDB107. This 
analysis identified ~11 clusters of cells (depending on the dataset), 
including astrocytes and qNSCs, aNSCs and NPCs, neuroblasts, neurons, 
oligodendrocyte progenitor cells, oligodendrocytes, endothelial cells, 
‘mural’ cells (pericytes or smooth muscle) and microglia. The genes used 
for identification are included in Supplementary Table 2 and a clustering 
of a subset of these genes is presented in Extended Data Fig. 1c.

Consistent with our previous study48, we did not observe sufficient 
differences in transcriptomic signatures to separate astrocytes from 
qNSCs and aNSCs from NPCs. We have described these clusters as 
‘astrocyte-qNSCs’ and ‘aNSC-NPCs’ throughout this study. Some cell 
types were not identified when using the LMO protocol (for example, 
T cells), probably because cells such as T cells are small and their mem-
branes may not allow for efficient LMO labeling. We also identified only 
a few ependymal cells in several of our datasets, although these cells 
are known to be numerous in the SVZ neurogenic niche. This is prob-
ably because ependymal cells are too big to be efficiently uploaded in 
droplets and/or they are sheared in the 10x microfluidic device.
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Cell cycle annotation and proliferative fraction
For cell cycle annotation (G1, S, G2/M) of cells in the SVZ neurogenic niche, 
we used Seurat’s CellCycleScoring function with default parameters. This 
annotation was used to calculate the ‘proliferative fraction’ in the SVZ 
neurogenic niche, that is, the percentage of cells predicted to be in S or 
G2/M phase. We used the proliferative fraction (ProliferativeFraction) 
as a functional metric of the SVZ neurogenic niche and used it to define 
‘biological age’ in this study (‘Age prediction and validation strategy’).

To test the correlation between chronological age and proliferative 
fraction in the SVZ neurogenic niche, we used Pearson’s correlation. 
There was a negative correlation (Pearson R = −0.8) between chrono-
logical age and proliferative fraction in the SVZ.

Age prediction and validation strategy
Chronological or biological age (‘label’) was regressed onto all log-
normalized gene expression values ln((gene transcripts / cell tran-
scripts) × 10,000) (‘features’) in a particular cell type using the R 
package glmnet (version 4.0.2)51. To determine the most robust method 
to predict age from single-cell RNA-seq data, we tested various preproc-
essing approaches: SingleCell, Pseudobulk, BootstrapCell (‘Boostrap-
Cell preprocessing’) and EnsembleCell (‘EnsembleCell preprocessing’). 
SingleCell uses bona fide single-cell transcriptomes with minimal 
processing as input to a lasso regression model to predict chronologi-
cal or biological age. Pseudobulk involves naïve pseudobulking all cells 
from the same cell type and sample before using a lasso regression 
model to predict chronological or biological age. BoostrapCell uses 
lasso regression models and EnsembleCell uses elastic net models 
(described separately below)53. There was no manual filtering of genes. 
Both lasso regression and elastic net regression enforce sparsity in the 
model coefficients with tunable parameter such that only a subset of 
genes will have nonzero coefficients in the trained aging clock models.

Chronological age was defined as months since birth. Biological 
age was defined as 35 – (ProliferativeFraction × 100) where Prolifera-
tiveFraction was the number of cells predicted to be in S or G2/M phase 
divided by the total number of cells from that sample. The number 
35 was selected to transform biological age into the same range as 
chronological age.

For validation, models were built on 3 of the 4 cohorts of mice, 
and validation was done on the remaining cohort (stringent ‘leave-
one-cohort-out’ validation (cross-cohort validation)). For training of 
each model, hyperparameters were optimized with fivefold to tenfold 
cross validation. To quantify the performance of the models, the data 
were presented as a correlation between the actual chronological (or 
biological) age of the mouse from which the cell originated (x axis) 
and the median predicted chronological (or biological) age for that 
mouse (y axis). Density of cells is represented with graded colors and 
each mouse is represented as a dot. We fitted a linear model (black line) 
through the points as well as the 95% confidence interval (light gray) 
using geom_smooth (ggplot2). Pearson’s correlation (R) is indicated on 
the graph. In dot plots, both the R values and the MAE, that is, median 
absolute error across all the cells, are presented.

To test the correlation between chronological age and biological 
age, we used the Pearson correlation. There was a positive correlation 
(R = 0.84) between chronological age and biological age predictions.

BootstrapCell preprocessing
BootstrapCell uses a lasso model with the following characteristics: To 
generate a BootstrapCell, 15 single-cell transcriptomes were sampled 
without replacement from the pool of cells of a given cell type from a 
given animal (for example, oligodendrocytes from a single mouse). 
Gene counts were then summed. A BootstrapCell constructed from 
15 cells was empirically found to balance the tradeoff between sample 
number and gene coverage per sample. This bootstrapping process was 
repeated 100 times for each cell type–animal combination. Bootstrap-
Cells were used as input into lasso regression models. This approach 

had the effect of normalizing the contribution of each animal rather 
than each single-cell transcriptome.

EnsembleCell preprocessing
We devised and evaluated a second preprocessing and age predic-
tion technique to compare to our BootstrapCell approach and to test 
robustness to changes in preprocessing and model architecture. In 
the EnsembleCell approach, 20 elastic net models were trained for 
each cell type. For each model, gene expression data from cells were 
randomly partitioned into groups of 15 single-cell transcriptomes and 
the unique transcript counts for all cells in each group were summed 
to create ‘EnsembleCells’. To predict age from the gene expression 
profile of a cell, we used the weighted average of predictions across 
all 20 models, where weights were determined by the R2 (coefficient of 
determination) of the model on a held-out validation set (‘Age predic-
tion and validation strategy’).

Use of aging clocks on independent mouse datasets
We determined if the single-cell-based models (‘aging clocks’) gener-
ated from our mouse SVZ neurogenic niche dataset could be applied 
to cells from an independent dataset and even to cells from another 
neurogenic region in the brain. To this end, we used a single-cell RNA-
seq dataset of the SVZ neurogenic niche from young and old mice48 and 
a single-cell RNA-seq dataset of the dentate gyrus of the hippocampus 
from mice of three different ages60. These datasets were preprocessed 
as described above using the ‘BootstrapCell’ method. We examined the 
distribution of the predicted chronological or biological ages of each 
cell in these datasets, color coded by the age of the mouse of origin.

Use of aging clocks on human datasets
To determine if the single-cell-based aging clocks generated from the 
mouse SVZ neurogenic niche could apply to cells from other regions 
of the brain and in other species, we used a single-nucleus RNA-seq 
dataset of the middle temporal gyrus from humans of different ages61. 
The dataset was preprocessed using the ‘BootstrapCell’ method as 
described above. As oligodendrocytes and astrocytes were present 
both in the human dataset and our mouse SVZ neurogenic niche data-
set, we applied our oligodendrocyte and astrocyte-qNSC chronologi-
cal aging clocks to the corresponding cell types in the human dataset. 
We rescaled the raw predictions linearly to obtain rescaled predicted 
chronological ages for each human BootstrapCell (rescaled predicted 
age = m × raw predicted age + b, where m = 10 and b = 125.5 for oligoden-
drocytes; m = 5 and b = 32.75 for astrocytes). The linear rescaling did 
not change the reported correlation between predicted chronological 
age and actual chronological age. Correlation plots were generated as 
described in ‘Age prediction and validation strategy’.

Cell-type-specific aging clocks using Tabula Muris Senis
To determine whether the method we used to derive cell-type-specific 
aging clocks was generalizable to tissues other than neurogenic niches, 
we used the count matrices from the single-cell RNA-seq dataset of the 
multi-tissue aging atlas Tabula Muris Senis62. We chose three diverse cell 
types in different tissues: endothelial cells from limb muscle, mature 
natural killer T cells from spleen and podocytes from kidney. For each 
cell type, the data were preprocessed and aging clocks were trained 
using the BootstrapCell approach described above. The performance 
of these models was evaluated by iteratively training on all mice except 
for one mouse and obtaining predictions on the held-out mouse (‘leave-
one-mouse-out’ cross validation (cross-mouse validation) instead 
of ‘leave-one-cohort-out’ cross validation (cross-cohort validation) 
because there were no distinct cohorts in this dataset).

Identification of genes that contribute to the aging clocks
Genes that contribute to each aging clock model were retrieved 
by selecting all genes from the clocks with nonzero coefficients 
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(Supplementary Table 4). The weight of a gene on each clock model 
(that is, the level of contribution based on coefficient values) and the 
sign of the coefficient (positive, higher gene expression is associated 
with older age; negative, lower gene expression is associated with older 
age) are indicated using a donut plot, with sector size indicating the 
gene weight and color indicating coefficient sign. Genes with positive 
coefficient are mostly upregulated with age, and genes with negative 
coefficient are mostly downregulated with age. The regulation of each 
chronological and biological clock gene (compared to other genes) 
is presented using a volcano plot (Extended Data Fig. 4). Most genes 
selected by the clocks were differentially expressed during aging. Less 
than half of the genes selected by chronological and biological aging 
clocks in a particular cell type overlapped (Supplementary Table 4). 
To determine if chronological or biological clock genes were shared 
across cell types or specific to each cell types, we used UpSet plots. 
Most genes selected by chronological or biological clocks were cell-
type specific. The ‘impact’ (sum of absolute values of coefficient) and 
‘count’ (sum of gene number) of shared genes or specific genes are 
indicated as a stacked bar plot.

Properties of genes that contribute to the aging clocks
To determine if genes that contribute to the aging clocks have specific 
properties, we examined their variability by plotting the coefficient of 
variation as a function of mean expression. Genes used by the clocks 
were more highly expressed and, at a given level of expression, had a 
higher coefficient of variation (that is, were more variable) than genes 
not in the clock (Extended Data Fig. 3a).

We also verified that the increased variability of genes that contrib-
ute to the clocks was not merely due to sparsity in the single-cell RNA-
seq dataset. On average, the majority of cells (for each cell type) express 
the genes that contribute to the clocks and this is higher than what 
was observed for genes that do not contribute to the clock (Extended 
Data Fig. 3b).

Gene-set enrichment analysis
GSEA was performed using Enrichr108 to query cell-type-specific clock 
genes for enrichment against GO biological process gene sets. Statistics 
were exported from the Enrichr web tool and processed and visualized 
in R with ggplot2 (version 3.3.3) package.

Parabiosis cohorts and single-cell RNA-seq dataset
Two independent cohorts of heterochronic parabiosis were generated 
(cohort 1 and cohort 2). Parabiosis cohort 1 involved six male mice 
across three pairings. We collected SVZ niches from one isochronic 
young mouse (5 months, control), one heterochronic young mouse 
(5 months, old blood), one heterochronic old mouse (26 months, 
young blood) and one isochronic old mouse (26 months, control), for 
a total of four SVZ niches (of six mice). Old parabionts were C57BL/6 
male mice from the NIA Aged Rodent colony at Charles River. Young 
parabionts were B6.SJL-Ptprca Pepcb/BoyJ male (Pep boy) mice from 
The Jackson Laboratory and C57BL/6 male mice from the NIA. Of 
the young, only the Pep boy mice were used for transcriptomics. 
Congenic (rather than isogenic) pairings were performed to enable 
verification of blood chimerism by FACS with antibodies specific to 
CD45.1 (BioLegend, 110705; 1:100 dilution) or CD45.2 (BioLegend, 
109814; 1:100 dilution) alleles. Mice were 4 and 25 months old at the 
start of the experiment, and parabiosis was conducted for 5 weeks 
until cell collection, when mice were 5 and 26 months old. Pairs were 
established as previously described69,75,80 by suturing the perito-
neums of adjacent flanks and joining skin with surgical clips. Five 
weeks after the parabiosis surgery, mice were anaesthetized with 
2.5% vol/vol avertin, euthanized by cardiac puncture and perfused 
with 15 ml PBS with heparin (50 U ml−1). SVZ dissection, digestion and 
FACS were performed as describe above. 10x Genomics single-cell 
transcriptome V2 libraries (one sample per 10x lane) were generated 

and sequenced on one Illumina HiSeq lane by the Stanford Func-
tion Genomics Facility. Animal care and parabiosis procedures were 
performed in accordance with Stanford University under IACUC  
protocols 8661 and 16246.

Parabiosis cohort 2 involved eighteen male mice across nine 
pairings. We collected SVZ niches from four isochronic young mice 
(5 months, control), four heterochronic young mice (5 months, old 
blood), four heterochronic old mice (21 months, young blood) and six 
isochronic old mice (21 months, control), for a total of eighteen SVZ 
niches (of eighteen mice). All mice in this cohort were sourced from 
the Jackson Laboratory and housed in the Veterinary Medical Unit at 
the Palo Alto VA77. Old mice were C57BL/6J and young were C57BL/6J 
or C57BL/6-Tg(UBC-GFP)30Scha/J. Mice were aged 4 and 19.5 months 
at the start of the experiment, and parabiosis proceeded for 5 weeks 
until cell collection, when mice were 5 and 21 months old. Surgeries 
were performed as described above. Five weeks after surgery, mice 
were anesthetized with 2.5% vol/vol avertin, euthanized by cardiac 
puncture and perfused with 15 ml PBS with heparin (50 U ml−1). SVZ 
dissection, digestion and FACS were performed as describe above. 
Tissue collection took place on three separate days and samples were 
multiplexed with LMOs. 10x Genomics single-cell transcriptome V3 
libraries were generated in-house and sequenced by Novogene on an 
Illumina NovoSeq lane. Animal care and parabiosis procedures were 
approved by the VA Palo Alto Committee on Animal Research and listed 
on ACORP LUO1736.

Parabiosis cohort 1 and cohort 2 were generated in different ani-
mal facilities, by different surgeons, in different years, and they were 
analyzed with different versions of 10x Genomics single-cell tran-
scriptomics kits. For visualization, data from the two independent 
cohorts were integrated on the cohort identity using the RunHarmony 
command from Harmony109. There were no statistically significant dif-
ferences between young isochronic (control) predicted chronological 
ages across cohorts in all six cell-type-specific aging clocks (Wilcoxon 
rank-sum test for median predicted chronological ages), suggesting 
that there was not a major batch effect that could have influenced the 
age prediction.

Exercise cohort and single-cell RNA-seq dataset
C57BL/6 male mice from the NIA Aged Rodent colony at Charles  
River were housed in the Veterinary Medical Unit at the Palo Alto VA97. 
Young and old mice were aged 4.5 months and 21.5 months, respec-
tively, at the start of the 5-week voluntary wheel running intervention, 
so they were 6 months and 23 months when tissues were collected.  
During the intervention period, mice (n = 4 for each age group)  
were singly housed in cages accommodating a running wheel.  
Control mice (n = 3–4 for each age group) had no access to a wheel. 
Running was verified by recording wheel revolutions. After 5 weeks, 
mice were anaesthetized with 2.5% v/v avertin, euthanized by  
cardiac puncture, perfused and cell suspensions from dissected  
SVZs generated as described in ‘Tissue and cell collection for the  
SVZ neurogenic niche’. Next, 10x Genomics V3.0 transcriptomics  
kits were used to generated libraries without upstream sample  
multiplexing. Tissue processing occurred across two separate  
mornings. SVZ libraries were pooled and sequenced on an Illumina 
NovoSeq.

Effect of rejuvenation interventions on the aging clocks
To measure the effect of heterochronic parabiosis and exercise on the 
aging clocks, we examined the distribution of predicted chronological 
or biological ages as described in ‘Use of aging clocks on independent 
mouse datasets’. We calculated the effect by the difference in median 
predicted chronological or biological age between intervention and 
control. In dot plots, these differences were represented as ‘effect’, 
using size and intensity of color, with blue indicating ‘rejuvenation’ 
and red indicating ‘aging’.
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Comparison of heterochronic parabiosis and exercise effects
To compare the effect of heterochronic parabiosis and exercise, we 
calculated the mean of the difference between the median predicted 
chronological age for a mouse for each intervention (data from cohort 
1 and cohort 2 for heterochronic parabiosis). Genes that were reversed 
by each intervention or by both, based on direction of average log fold 
change, were identified.

Differential expression analysis
To determine genes that were impacted by different interventions 
independently of the aging clocks, we used differential expression 
analysis, focusing on aNSC-NPCs (as this cell type is impacted by both 
interventions). MAST110 software was used to calculate differential 
expression statistics between three different conditions: age (young 
versus old), young blood (heterochronic parabiosis versus isochro-
nic old control), exercise (exercise versus sedentary in old mice). To 
determine the DEGs between young and old, we defined ‘young’ as 
mice <7 months and ‘old’ as mice >20 months. Permissive cutoffs of 
1.1-fold change and FDR < 0.1 were applied in each of the three different 
conditions. Overlap was presented as a Venn diagram.

Gene signature analysis
For specific gene signature analysis, we summed the expression of 
genes in one cell type from single-cell transcriptomic datasets within 
a specific gene signature defined by a specific GO term. Among 
the different signatures tested, we selected those that were signifi-
cantly increased with age and reversed by at least one intervention. 
We focused on two signatures: the ‘interferon-γ response’ signature 
defined as the sum of all normalized expression values of genes in the 
interferon gene set defined by Dulken et al.48 and the ‘negative regula-
tion of neurogenesis’ gene signature defined as the sum of all normal-
ized expression values of genes in the GO term ‘negative regulation of 
neurogenesis’ gene set (v6.21)111. Data were presented as violin plots 
and statistical analyses were performed using the Wilcoxon rank-sum 
test at the cell level.

Intervention classification models
To evaluate the aging relevance of ‘rejuvenation’ interventions, we 
generated cell-type-specific models trained on the intervention rather 
than age as a label. We used classification models, based on logistic 
regression (cv.glmnet(type.measure = ‘mse’, family = ‘binomial’) using 
all log-normalized gene expression values ln((gene transcripts / cell 
transcripts) × 10,000) as features. These intervention classification 
models were trained on single-cell RNA-seq data from heterochronic 
parabiosis (young blood) versus isochronic parabiosis old (control) or 
from exercise versus sedentary old mice. The data were preprocessed 
using the same BootstrapCell approach as described above. For logis-
tic regression, the label used corresponded to either the intervention 
(‘0’) or control (‘1’). Cross validation was performed on held-out cells 
(25% of the cells that were not used to build the models). After train-
ing and validating the intervention classification models, we applied 
these models to the single-cell RNA-seq dataset of the SVZ neurogenic 
niche from 28 mice, tiling 26 ages from young (3.3 months) to old (29 
months). Data were plotted as described in ‘Age prediction and valida-
tion strategy’, with (log(p(control) / p(intervention))) as a function of 
the actual chronological age of aNSC-NPC BootstrapCell transcrip-
tomes. Old mice were more likely to be classified as ‘isochronic old 
control’, whereas young mice were more likely to be classified as ‘het-
erochronic old’, indicating that the gene signature that distinguishes 
exposure to young and old blood is relevant to aging. R is the Pearson 
correlation. Higher correlation indicates that the main intervention 
signature overlaps with and reverses age-related changes. Correlations 
between intervention state prediction and chronological age across 
cell types and interventions were assessed, with a separate classifier 
built for each. The exercise classifiers were built to distinguish old 

sedentary from old exercised transcriptomes for each cell type. The 
lower correlation between intervention state predictions and age for 
the exercise samples implies that the signatures that distinguishes exer-
cised and sedentary mice are less related to aging than those derived 
from parabiosis intervention classifiers.

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes; we 
determined our sample sizes based on our previous analysis of similar 
types of datasets48. For study design, we used four independent cohorts 
of mice, each spanning different ages, to build the age prediction mod-
els. This design allows us to test the machine learning aging clock mod-
els with a robust cross-cohort validation (that is, ‘leave-one-cohort-out’ 
validation). Two independent experiments of heterochronic parabiosis 
were performed, involving 6 mice (4 collected, cohort 1) and 18 mice 
(cohort 2), with data collection spread across 4 d. One experiment 
of exercise (with controls lacking a running wheel) was performed, 
involving 15 mice processed across 2 d. Animals from group 3 from 
parabiosis cohort 2 were excluded because sample multiplexing failed 
and it was not possible to distinguish samples. The experiments were 
not randomized. Investigators were not blinded to allocation during 
experiments and outcome assessment, although the genomics analyses 
were performed in a systematic manner. To test correlations, we used 
Pearson’s correlation. To determine the statistical significance of the 
differences between intervention and control, we used the Wilcoxon 
rank-sum test (a non-parametric test).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All raw sequencing reads and key processed files are accessible at 
BioProject PRJNA795276 (aging, parabiosis) and the Gene Expres-
sion Omnibus under accession GSE196364 (exercise). Processed data 
files for the aging and parabiosis data can be found at https://doi.
org/10.5281/zenodo.7145399. Processed data files for the exercise data 
can be found at https://doi.org/10.5281/zenodo.7338746. External raw 
sequencing reads for the mouse hippocampus dataset are accessible 
at the Gene Expression Omnibus under accession GSE159768. External 
data on human middle temporal gyrus are accessible at https://por-
tal.brain-map.org/atlases-and-data/rnaseq/human-mtg-smart-seq/. 
External data from Tabula Muris Senis are accessible at https://figshare.
com/projects/Tabula_Muris_Senis/64982/. PanglaoDB can be accessed 
at https://panglaodb.se/.

Code availability
The code used to analyze genomic data and generate aging clocks in 
the current study is available in the GitHub repository for this paper 
(https://github.com/sunericd/svz_singlecell_aging_clocks/). A frozen 
version of the code repository is available as Supplementary Software 1.
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Extended Data Fig. 1 | Characteristics of the SVZ single-cell transcriptomic 
data and generalization performance of cell-type-specific aging clocks to 
humans and generalization of the framework to other cell types and tissues. 
a, Lipid-modified oligonucleotide cell barcodes detected from 8 SVZ samples 
multiplexed in one 10x lane. b, Same as in (a) but visualized using tSNE. Samples 
5 and 6 were from mice of the same age (and colored in the same color in Fig. 1c). 
c, Heatmap of single cell gene expression for top 5 cell type markers used for 
annotation of cell type clusters. Colored bar on top indicates the various cell type 
clusters. d, Overview of Pearson correlation coefficients (R) and median absolute 
error (MAE) values for tested methods of predicting chronological age across 
cell types from single-cell transcriptomic data, including both full distribution 
(Full) and median metrics only (Median). Performance is based on cross-cohort-
validation. e, Correlation plot to assess the generalizability of chronological 
aging clocks (BoostrapCell) to a human dataset from Hodge et al61. the single-

nucleus RNA-seq dataset of the middle temporal gyrus of human patients of 
different ages (Hodge et al.61). Density of BootstrapCell predictions is depicted 
in color and overlaid black dots represent the median prediction for each 
sample. R values are Pearson’s correlation coefficients at the sample level. Bands 
correspond to 95% confidence interval. f, Performance of chronological aging 
clocks (BootstrapCell) derived from the single cell RNA-seq multi-tissue atlas 
Tabula Muris Senis, 2020. Predicted chronological age of endothelial cells from 
limb muscle, mature natural killer (NK) T cells from spleen, and podocyte cells 
from kidney from aging clocks built on Tabula Muris Senis as a function of actual 
chronological age for several mice of different ages. Density of BootstrapCell 
predictions is depicted in color and overlaid black dots represent the median 
prediction for each sample. Performance is based on cross-mouse validation.  
R values are Pearson’s correlation coefficients at the sample level.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Genes that contribute to the chronological aging 
clocks and biological aging clocks. a, Contribution of individual genes to the 
chronological aging clocks (BootstrapCell) (see Fig. 3a for aNSC-NPCs). Donut 
plots, with sector size denoting gene weight in the model and color indicating 
sign of expression change with age. Total number of genes used by the clock is 
provided in the center of each donut plot. Positive coefficients (orange) indicate 
increased gene expression is associated with older age. Negative coefficients 
(blue) indicate decreased gene expression is associated with older age. b, As in 
(a) but for biological aging clocks (BootstrapCell) and their coefficients. c, Upset 
plot illustrating the intersection of gene sets used by cell-type-specific biological 

aging clocks. No genes were used in all 6 biological aging clocks. d, Count and 
coefficient impact of shared and cell-type-specific clock genes for chronological 
aging clocks. Shared is defined as present in at least one of the other five clocks 
(see Fig. 3c for aNSC-NPCs). e, As in (d) but for biological aging clocks. f, Top 
enriched Gene Ontology Biological Process terms from gene set enrichment 
analysis of genes used in biological aging clocks. Shared genes (present in two or 
more clocks) are enriched for cytokine-mediated signaling pathway and cellular 
response to type I interferon. The aNSC-NPC biological aging clock genes are 
enriched for cell cycle pathways.

http://www.nature.com/nataging


Nature Aging

Resource https://doi.org/10.1038/s43587-022-00335-4

Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/nataging


Nature Aging

Resource https://doi.org/10.1038/s43587-022-00335-4

Extended Data Fig. 3 | Variability and mean expression of genes in the 
chronological aging clocks. a, Scatter plots of the log2 coefficient of variation 
(CV) of the normalized BootstrapCell gene expression as a function of the log2 
mean normalized BootstrapCell gene expression for all identified genes in the 
six different cell types. Red dots correspond to genes that contribute to the 

chronological aging clocks for each cell type (selected by clock) and black dots 
correspond to genes that do not contribute to the chronological aging clocks 
(not selected by clock). b, As in (a) but for the fraction of cells with nonzero 
counts in the dataset as a function of the log2 coefficient of variation (CV) of the 
normalized gene expression.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison of genes in cell-type-specific aging clocks 
and differentially expressed genes with age. a, Volcano plots of negative 
log10 false discovery rate (FDR) from differential gene expression analysis 
using MAST for the young and old mouse groups. We defined ‘young’ as mice <7 
months old and ‘old’ as mice >20 months old. Colored dots correspond to genes 

that contribute to the chronological aging clocks for each cell type (selected 
by clock) (orange representing genes with positive clock coefficients and blue 
representing genes with negative clock coefficients) and gray dots correspond to 
that do not contribute to the chronological aging clocks (not selected by clock). 
b, As in (a) but for the biological aging clocks.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Gene detection rate in cell-type-specific aging clocks. 
a, Unique genes detected in single cell transcriptomes from the subventricular 
zone as a function of gene detection rate. Red dots indicate unique genes 
detected at 2%, 20%, and 80% detection rates. b, Upset plots showing 
transcriptome overlaps between cell types at different levels of expression 

detection. Most genes are shared if a very low threshold of detection is used. 
Above 80% detection rate, transcriptomes are very cell type specific. However, 
the shared core of easily detected genes in transcriptomes (70 genes) is much 
larger than the shared core of genes selected by clocks (~1).
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Extended Data Fig. 6 | Application of cell-type-specific aging clocks 
to heterochronic parabiosis cohorts. a, UMAP projection of single-cell 
transcriptomes labeled by cell type from both parabiosis cohorts. b, Scatter plot 
of log2 mean BootstrapCell expression of all genes in the parabiosis cohort 1 
data compared to the same genes in the parabiosis cohort 2 data for aNSC-NPCs. 
Red dots correspond to genes that contribute to the aNSC-NPC chronological 
aging clock (selected by clock). Gray dots correspond to genes that do not 
contribute to the aNSC-NPC chronological aging clock (not selected by clock). 
c, Density plots for prediction of chronological age using chronological aging 

clocks for Parabiosis cohort 1 (BootstrapCell). d, Density plots for prediction 
of chronological age using chronological aging clocks for Parabiosis cohort 
2 (BoostrapCell). e, Density plots for prediction of chronological age using 
chronological aging clocks for both cohorts separated by mouse (BootstrapCell). 
f, Density plots for prediction of biological age using biological aging clocks for 
Parabiosis cohort 1 (BootstrapCell). g, Density plots for prediction of biological 
age using biological aging clocks for Parabiosis cohort 2 (BoostrapCell). h, 
Density plots for prediction of biological age using biological aging clocks for 
both cohorts separated by mouse (BoostrapCell).
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Extended Data Fig. 7 | Statistical comparison of the rejuvenation effect size 
for heterochronic parabiosis and exercise at the mouse level. a, Violin plots 
of the median predicted chronological ages for all mice in parabiosis cohort 2 
(BootstrapCell). Each dot correspond to the median predicted chronological age 

of an individual mouse. P-values at the mouse level obtained from the two-sided 
Wilcoxon rank-sum test. b, As in (a) but for the median predicted biological ages. 
c, As in (a) but for the exercise cohort. d, As in (a) but for the median predicted 
biological age in the exercise cohort.
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Extended Data Fig. 8 | Application of cell-type-specific aging clocks to 
exercise cohort. a, UMAP projection of single-cell transcriptomes labeled 
by cell type from the exercise intervention cohort. b, Density plots to predict 
chronological age using chronological aging clocks (BootstrapCell) for young 

and old, exercise and control samples. c, Density plots to predict biological age 
using biological aging clocks (BoostrapCell) for young and old, exercise and 
control samples.
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Extended Data Fig. 9 | Comparison of genes in cell-type-specific aging 
clocks impacted by heterochronic parabiosis and by exercise. a, Dot plot 
summarizing and comparing intervention effects across cell types. Effect sizes 
for parabiosis were determined by averaging cohort 1 and cohort 2. Exposure to 
young blood via heterochronic parabiosis has a stronger rejuvenation effect than 
exercise, and the impact is strongest in aNSC-NPCs. b, Pie charts indicating the 
overlap and directional effects of different interventions on genes selected by 
chronological aging clocks (BootstrapCell). Top: selected clock genes increase 
with age: Bottom: selected clock genes decrease with age. c, Barplots showing 

the proportion of genes that are differentially expressed age which are reversed 
by intervention, cell type, and whether the genes increase or decrease with age 
(abs(ln(fold change)) > 0.1, or approximately greater than a 1.1 fold change with 
age, FDR < 0.1). Parabiosis is effective at shifting differentially expressed genes 
during aging towards a more young-associated expression levels (more green 
in ‘Parabiosis’ column). Reduction of expression of genes that increase with age 
is larger than the induction of expression of genes that decrease with age (more 
green in ‘Age Increased’ rows).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of mean expression of genes in the 
aging clocks and genes impacted by rejuvenation in the heterochronic 
parabiosis and exercise datasets. a, Scatter plots of the log2 mean normalized 
BootstrapCell gene expression in the exercise single-cell data as a function of the 
log2 mean normalized BootstrapCell gene expression in the parabiosis (cohorts 1 
and 2 combined) single-cell data for the six main cell types. Red dots correspond 
to genes that contribute to the chronological aging clocks (selected by clock) and 

gray dots correspond to genes that do not contribute to the chronological aging 
clocks (not selected by clock). Genes that contribute to the clock are both highly 
expressed in the parabiosis and exercise datasets. b, As in (a) but colored dots 
correspond to genes identified as differentially expressed by parabiosis (green) 
and exercise (blue). Gray dots correspond to genes that are affected neither by 
parabiosis nor by exercise (neither). Permissive 1.1-fold change and FDR < 0.1 
cutoffs were applied in each of the 2 different conditions.
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